Opposing calcium dependent signaling pathways control skeletal muscle differentiation by regulating a chromatin remodeling enzyme

نویسندگان

  • Brian T. Nasipak
  • Teresita Padilla-Benavides
  • Karin M. Green
  • John D. Leszyk
  • Wenjie Mao
  • Silvana Konda
  • Saïd Sif
  • Scott A. Shaffer
  • Yasuyuki Ohkawa
  • Anthony N. Imbalzano
چکیده

Calcium signalling is important for differentiation-dependent gene expression, but is also involved in other cellular functions. Therefore, mechanisms must exist to distinguish calcium signalling relevant to differentiation. Calcineurin is a calcium-regulated phosphatase that is required for myogenic gene expression and skeletal muscle differentiation. Here, we demonstrate that inhibition of calcineurin blocks chromatin remodelling and that the Brg1 ATPase of the SWI/SNF chromatin remodelling enzyme, which is required for the activation of myogenic gene expression, is a calcineurin substrate. Furthermore, we identify the calcium-regulated classical protein kinase C β (PKCβ) as a repressor of myogenesis and as the enzyme that opposes calcineurin function. Replacement of endogenous Brg1 with a phosphomimetic mutant in primary myoblasts inhibits myogenesis, whereas replacement with a non-phosphorylatable mutant allows myogenesis despite inhibition of calcineurin signalling, demonstrating the functionality of calcineurin/PKC-modified residues. Thus, the Brg1 chromatin remodelling enzyme integrates two antagonistic calcium-dependent signalling pathways that control myogenic differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling.

Skeletal muscle differentiation requires the coordinated activity of transcription factors, histone modifying enzymes, and ATP-dependent chromatin remodeling enzymes. The type II protein arginine methyltransferase Prmt5 symmetrically dimethylates histones H3 and H4 and numerous nonchromatin proteins, and prior work has implicated Prmt5 in transcriptional repression. Here we demonstrate that Myo...

متن کامل

Skeletal muscle specification by myogenin and Mef2D via the SWI/SNF ATPase Brg1.

Myogenin is required not for the initiation of myogenesis but instead for skeletal muscle formation through poorly understood mechanisms. We demonstrate in cultured cells and, for the first time, in embryonic tissue, that myogenic late genes that specify the skeletal muscle phenotype are bound by MyoD prior to the initiation of gene expression. At the onset of muscle specification, a transition...

متن کامل

Genome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis

Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...

متن کامل

Comparison of the Alterations of Gene Expression Related to Signaling Pathways of Synthesis and Degradation of Skeletal Muscle Protein Induced by Two Exercise Training Protocols

Background and Objectives: Skeletal muscle mass depends on the balance between synthesis and degradation of muscle protein, which changes with aging and disease. The aim of the present reserch was to examine the effects of two exercise training protocols on alterations of some genes involved in pathways of protein synthesis and degradation in order to achieve a more effective training program i...

متن کامل

Calcium's role in mechanotransduction during muscle development.

Mechanotransduction is a process where cells sense their surroundings and convert the physical forces in their environment into an appropriate response. Calcium plays a crucial role in the translation of such forces to biochemical signals that control various biological processes fundamental in muscle development. The mechanical stimulation of muscle cells may for example result from stretch, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015